sábado, 26 de febrero de 2011

Funcion Reales

En matemáticas, una función,[1] aplicación o mapeo f es una relación entre un conjunto dado X (el dominio) y otro conjunto de elementos Y (el codominio) de forma que a cada elemento x del dominio le corresponde un único elemento del codominio f(x). Se denota por:
f \colon X \to Y \,
Comúnmente, el término función se utiliza cuando el codominio son valores numéricos, reales o complejos. Entonces se habla de función real o función compleja mientras que a las funciones entre conjuntos cualesquiera se las denomina aplicaci de las funciones.
  1. Condición de existencia: Todos los elementos de X están relacionados con elementos de Y, es decir, \forall x\in X,\ \exists y\in Y\ \backslash \ (x,y)\in f.
  2. Condición de unicidad: Cada elemento de X está relacionado con un único elemento de Y, es decir, si (x,y_1)\in f \and (x,y_2)\in f \Rightarrow y_1 = y_2.

Notación y nomenclatura

Al dominio también se le llama conjunto de entrada o conjunto inicial. Se denota por {\rm dom}(f)\, o {\rm dom}_f\,. A los elementos del dominio se les llama habitualmente argumentoone
  • La función definida por f(x)=x+1\,, tiene como dominio, codominio e imagen a todos los números reales (\mathbb{R}).
Función con Dominio X y Rango Y
  • Para la función g \colon {\mathbb{R}} \to {\mathbb{R}} tal que g(x)=x^2\,, en cambio, si bien su dominio y codominio son iguales a \mathbb{R}, sólo tendrá como imagen los valores comprendidos entre 0 y +.
  • En la figura se puede apreciar una función f \colon X \to Y \,, con
{\rm D}_f = X = \{1, 2, 3,4\} \,
{\rm C}_f \ = \; Y = \{a, b, c, d \} \,
Note que a cada elemento de X le corresponde un único elemento de Y. Además, el elemento a de Y no tiene origen, y el elemento b tiene dos (el 1 y el 4). Finalmente,
{\rm Im}_f = \{b, c, d\}\subseteq Y.
Esta función representada como relación, queda: X\times Y = \{(1,b), (2,c), (3,d), (4,b) \}

Igualdad de funciones

Sean las funciones f: A → B y g: C → D, decimos que f es igual a g y escribimos f=g si y sólo si se cumple que ambas funciones:
  1. tienen igual dominio, A=C,
  2. tienen igual codomino, B=D, y
  3. tiene la misma asignación, es decir que para cada x se cumple que f(x)=g(x).

Representación de funciones

Las funciones se pueden presentar de distintas maneras:
  • usando una relación matemática descrita mediante una expresión matemática: ecuaciones de la forma y = f(x). Cuando la relación es funcional, es decir satisface la segunda condición de la definición de función, se puede definir una función que se dice definida por la relación, A menos que se indique lo contrario, se supone en tales casos que el dominio es el mayor posible (respecto a inclusión) y que el codominio son todos los Reales. El dominio seleccionado se llama dominio natural.

No hay comentarios:

Publicar un comentario